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Background: Early cancer detection could identify tumors when outcomes are superior at a time when outcomes are
superior and treatment is less morbid. This prospective case-control sub-study (from NCT02889978 and NCT03085888)
assessed the performance of targeted methylation analysis of circulating cell-free DNA (cfDNA) to detect and localize
multiple cancer types across all stages at high specificity.
Participants and methods: The 6689 participants [2482 cancer (>50 cancer types), 4207 non-cancer] were divided into
training and validation sets. Plasma cfDNA underwent bisulfite sequencing targeting a panel of >100 000 informative
methylation regions. A classifier was developed and validated for cancer detection and tissue of origin (TOO)
localization.
Results: Performance was consistent in training and validation sets. In validation, specificity was 99.3% [95% confidence
interval (CI): 98.3% to 99.8%; 0.7% false-positive rate (FPR)]. Stage IeIII sensitivity was 67.3% (CI: 60.7% to 73.3%) in a
pre-specified set of 12 cancer types (anus, bladder, colon/rectum, esophagus, head and neck, liver/bile-duct, lung,
lymphoma, ovary, pancreas, plasma cell neoplasm, stomach), which account for w63% of US cancer deaths
annually, and was 43.9% (CI: 39.4% to 48.5%) in all cancer types. Detection increased with increasing stage: in the
pre-specified cancer types sensitivity was 39% (CI: 27% to 52%) in stage I, 69% (CI: 56% to 80%) in stage II, 83% (CI:
75% to 90%) in stage III, and 92% (CI: 86% to 96%) in stage IV. In all cancer types sensitivity was 18% (CI: 13% to
25%) in stage I, 43% (CI: 35% to 51%) in stage II, 81% (CI: 73% to 87%) in stage III, and 93% (CI: 87% to 96%) in
stage IV. TOO was predicted in 96% of samples with cancer-like signal; of those, the TOO localization was accurate
in 93%.
Conclusions: cfDNA sequencing leveraging informative methylation patterns detected more than 50 cancer types across
stages. Considering the potential value of early detection in deadly malignancies, further evaluation of this test is
justified in prospective population-level studies.
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INTRODUCTION

Earlier cancer detection offers the opportunity to identify
tumors when cures are more achievable, outcomes are
superior, and treatment can be less morbid.1,2 Effective
screening paradigms exist only for a small subset of cancers,
are focused on single cancer types, and have variable
adoption and compliance.3e6 Thus, diagnoses are often
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prompted by symptoms and are made at later stages. Uti-
lization of blood-based circulating tumor cell-free DNA
(cfDNA) to simultaneously detect and localize multiple
cancer types7,8 may address this large unmet need. In large-
scale population screening, such a multi-cancer detection
approach would require high specificity, clinically useful
sensitivity, and highly accurate tissue of origin (TOO) iden-
tification to limit the scope, cost, and complexity of evalu-
ating asymptomatic patients.

There are few studies interrogating simultaneous detec-
tion and localization of multiple cancer types using cfDNA
or other analytes.9e11 These studies generally analyzed a
handful of cancer types in geographically-restricted co-
horts9e11 or interrogated a single cfDNA-based molecular
approach.11 Current commercially available cfDNA-based
approaches interrogating single-nucleotide variants (SNVs/
indels) that focus on key alterations associated with specific
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tumor types or treatment options12 may be hampered by
confounding signals from white blood cells (WBCs) or other
tissue.13,14 Similarly, approaches based on detecting so-
matic copy number alterations may be limited by smaller
relative differences between cases and controls resulting in
a need for increased sequencing depth as well as technical
variation restricting the signal-to-noise ratio.15,16 These
approaches as well as others such as protein biomarkers
have not yet demonstrated robust TOO assignment across a
broad range of tumor types to direct a diagnostic evalua-
tion. To date there have been no population-scale studies of
cancer cfDNA signatures nor have there been studies
designed to ensure consistent performance in a represen-
tative screening population.

The Circulating Cell-free Genome Atlas (CCGA;
NCT02889978) study was designed to determine whether
genome-wide cfDNA sequencing in combination with ma-
chine learning could detect and localize a large number of
cancer types at sufficiently high specificity to be considered
for a general population-based cancer screening program.
During discovery work in the first CCGA sub-study, whole-
genome bisulfite sequencing (WGBS) interrogating
genome-wide methylation patterns outperformed whole-
genome sequencing (WGS) and targeted sequencing ap-
proaches interrogating copy-number variants (CNVs) and
single-nucleotide variants (SNVs)/small insertions and de-
letions, respectively.7,17 Additionally, targeted sequencing
with SNV-based classification was significantly confounded
by clonal hematopoiesis of indeterminate potential
(CHIP)18; such a test would thus require concurrent
sequencing of WBCs to return accurate results. Herein, we
report results from the second case-control sub-study
designed to develop, train, and validate a methylation-
based assay for simultaneous multi-cancer detection
across stages as well as TOO localization in preparation for
clinical validation and utility studies (NCT03085888,
NCT03934866) and for a study in which results will be
returned to health care providers and patients
(NCT04241796).
METHODS

Study design and participants

CCGA (NCT02889978) is a prospective, multicenter, case-
control, observational study with longitudinal follow-up.
De-identified biospecimens were collected from 15 254
Figure 1. The CCGA study for development and validation of a cfDNA-based assay
(A) CCGA study design. The CCGA study included three pre-specified sub-studies de
localization. The burgundy, shaded boxes highlight the second sub-study, which is the f
One circulating cfDNA fragment is represented on the top left; individual CpGs are
interrogated fragment-level methylation patterns as indicated on the bottom left (‘Frag
cells across the body including WBCs13 and is present in plasma. These DNA fragment
from a region on chromosome 10. Individual cfDNA fragment sequencing reads are ind
participants, these fragments are largely unmethylated as indicated by the almost unif
contains a mix of methylated (burgundy) and unmethylated (teal) fragments as the c
body. Sequencing of the tumor tissue sample confirms that this region is almost entir
assay but is illustrative. (C) Target selection. A large database of methylation pattern
samples from the CCGA study as well as WGBS analysis of a set of commercially so
signature (‘methylation information type’) from these samples allowed the identificatio
biological signatures of cancer and TOO.
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participants with (n ¼ 8584; 56%) and without (n ¼ 6670;
44%) cancer from 142 sites in North America. Up to 80 ml
whole blood was collected from all participants as part of
the research study; only two tubes of plasma were pro-
cessed separately per participant. Pre-treatment tumor
tissue when available was submitted from those with can-
cer (supplementary information, available at Annals of
Oncology online). The CCGA study was divided into three
pre-specified sub-studies: (1) discovery,17 (2) further anal-
ysis (training/validation) with the selected assay (reported
herein), and (3) further validation (forthcoming) (Figure 1A).
The first sub-study aimed to identify the highest performing
assay(s) for further development and included three inde-
pendent, comprehensive sequencing approaches.17,19 A
methylation-based assay was selected for further develop-
ment in this second sub-study based on the previous finding
that WGBS outperformed targeted sequencing and WGS
approaches targeting SNVs/small insertions and deletions
and CNVs, respectively.7,17 The primary objective was to
train and validate a classifier for cancer versus non-cancer
and TOO identification utilizing an updated targeted
methylation assay (Figure 1B and C, Figure 2). Pre-specified
analysis groups included all cancer types (more than 50
cancer types20; cancers grouped for reporting purposes,
see supplementary information, available at Annals of
Oncology online) and a subset of 12 high-signal cancers
(supplementary information, available at Annals of
Oncology online) based on results from the first sub-study
(>50% sensitivity on at least one of three prototype
sequencing assays) and Surveillance, Epidemiology, and End
Results (SEER) mortality data (anus, bladder, colon/rectum,
esophagus, head and neck, liver/bile-duct, lung, lymphoma,
ovary, pancreas, plasma cell neoplasm, stomach).17,21 The
third sub-study was designed to further validate the clas-
sifier in a large population and is ongoing.

This second sub-study reported herein included 4841
participants from CCGA divided into a training set (n ¼
3133: 1742 cancer and 1391 non-cancer; Figure 3) and an
independent validation set (n ¼ 1354: 740 cancer and 614
non-cancer); 354 samples were reserved for a tumor biopsy
reference set. Samples for each sub-study were selected to
ensure a pre-specified distribution of cancer types and non-
cancers across sites in each cohort (supplementary
information, available at Annals of Oncology online).

To operate at high specificity, large numbers of well-
characterized controls were required both to train
for multi-cancer detection.
signed to discover, train, and validate an assay for multi-cancer detection and
ocus of this report. (B) Methylation biology discriminates cancer from non-cancer.
indicated as burgundy (methylated) or teal (unmethylated) circles. This assay
ment-Level CpG Sites’). In non-cancer participants (top right), cfDNA is shed from
s retain methylation marks from the originating cells as indicated in this example
icated as horizontal lines of differing sizes and are aligned vertically. In non-cancer
ormly teal fragments. In a participant with lung cancer (bottom right), the plasma
irculating cfDNA is a mixture of tumor cfDNA and cfDNA from other cells in the
ely methylated as indicated. Note that tumor tissue is not a requirement for this
s (‘data input types’) was constructed from WGBS analysis of cfDNA and tissue
urced tissue samples. Systematic examination of the fragment-level methylation
n of a large number of genomic regions (‘target selection’) containing informative
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classification and to measure specificity accurately due to
sampling variability (i.e. to ensure >99% specificity was
achieved with >90% confidence). These additional non-
cancer blood samples were obtained from the independent
STRIVE study (NCT03085888), a prospective, multicenter,
case-cohort, observational study with longitudinal follow-up.
STRIVE was designed to independently validate the ability of
this multi-cancer early detection test to detect and localize
multiple invasive cancers including breast in a population
of women undergoing screening mammography
(supplementary information, available at Annals of Oncology
online). De-identified biospecimens were collected from
99 286 participants from 35 sites. Samples from women
without a known history of cancer (non-cancer) were
selected from a single STRIVE site and incorporated into the
training (n ¼ 1587) and independent validation sets (n ¼
615). As noted above, these STRIVE non-cancer samples were
used to train the classifier and to ensure>99% specificity was
achieved with >90% confidence. Thus, 6689 total samples
were analyzed in this second sub-study: 4720 in the training
set (1742 cancer; 2978 non-cancer) and 1969 in the inde-
pendent validation set (740 cancer; 1229 non-cancer;
Figure 3).

All participants were required to provide informed con-
sent; eligibility and exclusion criteria for each study are
described in the supplementary information, available at
Annals of Oncology online. Institutional Review Board or
independent ethics committee approval was obtained at
each participating site and the study was conducted in
accordance with the Good Clinical Practice Guidelines of the
International Conference on Harmonization.
Sample collection, accessioning, storage, and processing

Details of plasma and tumor tissue sample collection,
accessioning, storage, and processing are described in the
supplementary information, available at Annals of Oncology
online.
WGBS

WGBS resulted in 3508 analyzable samples: cfDNA [n ¼
2628 (1493 cancer; 1135 non-cancer)], formalin fixed
paraffin embedded (FFPE) tumor biopsies (n ¼ 242), and
WBCs (n ¼ 70) from the first CCGA sub-study; commercial
tissue or cells [n ¼ 227; Discovery Life Sciences (formerly
Conversant Biologics, Inc.); Huntsville, AL]; non-cancer cells
(n ¼ 1; from Yuval Dor, Hebrew University, Jerusalem,
Israel); and FFPE tumor biopsies from the second CCGA sub-
study (n ¼ 340; these participants were not used in sub-
sequent evaluation of the classifier). WGBS is described in
the supplementary information, available at Annals of
Oncology online.
Figure 2. Pre-classifier sample preparation and preprocessing overview.
Illustration of how cfDNA fragments from the blood are processed: cfDNA was
extracted from plasma, subjected to bisulfite treatment, and regions of interest
were pulled down, followed by sequencing and alignment. In this way the
methylation state of fragments was obtained.
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Figure 3. Participant disposition.
A total of 4841 participants (2836 cancer, 2005 non-cancer) from the CCGA study and 2202 non-cancer participants from the STRIVE study were included in this
pre-specified analysis. Of these, 3133 samples from CCGA were allocated to training (1742 cancer, 1391 non-cancer) and 1354 were allocated to validation (740 cancer,
614 non-cancer); 1587 samples from STRIVE were allocated to training and 615 to validation. STRIVE non-cancer samples were used to train the classifier and to ensure
>99% specificity was achieved with >90% confidence (see Methods, supplementary information, available at Annals of Oncology online). Participant disposition is
indicated. Overall, 3052 samples in training (1531 cancer, 1521 non-cancer) and 1264 samples in validation (654 cancer, 610 non-cancer) were analyzable and in the
pre-specified primary analysis population. Samples reserved for pre-specified future analyses (as indicated) included, for example, samples lacking 1-year follow-up and
samples from participants with carcinoma in situ (CIS) (see Methods).
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Targeted methylation panel design, sample processing,
and sequencing

Based on the WGBS results as noted above17,19 and
methylation array data from The Cancer Genome Atlas,21,22

regions of the hg19 genome22 predicted to contain cancer
and/or tissue-specific methylation patterns in cfDNA rela-
tive to non-cancer controls were identified and the most
informative targets were combined into a custom hybridi-
zation capture panel (Twist Bioscience, San Francisco, CA)
using a custom algorithm (supplementary information,
available at Annals of Oncology online). The final targeted
methylation panel covered 103 456 distinct regions (17.2
Mb) and 1 116 720 cytosine-guanine dinucleotides (CpGs).

Plasma cfDNA (up to 75 ng) was subjected to bisulfite
conversion (EZ-96 DNA Methylation Kit; Zymo Research,
Volume xxx - Issue xxx - 2020
Irvine, CA), prepared as a dual indexed sequencing library,
and enriched using standard hybridization capture condi-
tions, followed by 150-bp paired-end sequencing on Illu-
mina NovaSeq (supplementary information, available at
Annals of Oncology online). Individual libraries were
sequenced to a median depth of 113 million fragments
(median unique on-target depth: 139X).

Classification of cancer versus non-cancer and TOO

Custom software was built to classify samples using source
models that recognized methylation patterns per region as
similar to those derived from a particular cancer type, fol-
lowed by a pair of ensemble logistic regressions: one to
determine cancer/non-cancer status and the other to
resolve the TOO to one of the listed sites (supplementary
https://doi.org/10.1016/j.annonc.2020.02.011 5
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Figure 4. Targeted methylation cfDNA test performance.
(A) Specificity. Specificity was >99% in the training and validation sets. Importantly, this represents a consistent, single false-positive rate (FPR) across the >50 cancer
types in this study. (B) Sensitivity. Sensitivity (y-axis) is reported by clinical stage (x-axis) in the pre-specified cancer types (left panel) and in all cancer types (right panel)
for training and validation. Numbers indicate samples in trainingjvalidation sets. It excludes 45 samples in training and 21 samples in validation without stage infor-
mation (e.g. leukemias). (C) Tissue of origin. Tissue of origin (TOO) accuracy (y-axis) is reported by clinical stage (x-axis) in the pre-specified cancer types (left panel) and
in all cancer types (right panel) for training and validation. Numbers indicate samples in trainingjvalidation sets.
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Figure S1C, available at Annals of Oncology online). Both
levels of model (source models, logistic regression) as well
as any thresholding parameters were trained on 11 154
samples from 5854 participants (supplementary
information, available at Annals of Oncology online) using
cross-validation so that no data in held-out folds could be
accessed during training.

Tumor fraction

Tumor fraction analyses are described in the supplementary
information, available at Annals of Oncology online.

Blinding

All analyses in training and validation were double-blinded;
classifiers developed on the training set were locked and
the final classifier was selected before the validation dataset
was released and before release of the validation dataset a
6 https://doi.org/10.1016/j.annonc.2020.02.011
data integrity team blinded to classifier development,
analysis, and clinical/assay evaluability reviewed merged
data to ensure completeness (supplementary information,
available at Annals of Oncology online). Researchers
developing classifiers were also blinded to cancer status in
the validation set.
RESULTS

This second pre-specified CCGA sub-study included 6689
participants with previously untreated cancer (n ¼ 2482) or
without cancer (n ¼ 4207) (Figure 3). More than 50 primary
cancer types20 across all clinical stages were represented.
Samples were divided into training (n ¼ 4720) and inde-
pendent validation sets (n ¼ 1969). A total of 4316 par-
ticipants [training: 3052 (1531 cancer: stage I: 28%; stage II:
25%; stage III: 20%; stage IV: 24%; missing/not expected:
3%; 1521 non-cancer); validation: 1264 (654 cancer: stage I:
Volume xxx - Issue xxx - 2020
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Figure 5. Sensitivity in individual tumors by stage.
Sensitivity at 99.8% specificity (training) or 99.3% specificity (validation) with 95% confidence intervals is reported for individual cancer types with at least 50 samples.
Clinical stage is indicated below the plots as is the number of samples in training and validation (separated by a vertical line).

M. C. Liu et al. Annals of Oncology
28%; stage II: 25%; stage III: 21%; stage IV: 23%; missing/not
expected: 3%; 610 non-cancer)] were analyzable and
included in the primary analysis population (supplementary
Table S1 available at Annals of Oncology online). Training
and validation sets were generally comparable with respect
to age, sex, race/ethnicity, and body mass index in the
cancer and non-cancer groups; as expected, fewer never-
smokers were in the cancer group in the training and vali-
dation sets (supplementary Table S1 available at Annals of
Oncology online).

The classifier achieved consistently high specificity
between the cross-validated training and independent
Volume xxx - Issue xxx - 2020
validation sets [99.8% (95% CI: 99.4% to 99.9%) versus
99.3% (95% CI: 98.3% to 99.8%), respectively; P ¼ 0.095]
(Figure 4A); this reflected a single, consistent, false-positive
rate (FPR) of less than 1% across the more than 50 cancer
types. The FPR in the validation set was similar for the CCGA
and STRIVE non-cancer samples [0.7% (95% CI: 0.1% to
2.6%) versus 0.6% (95% CI: 0.1% to 2.1%), respectively;
P ¼ 0.830]; supporting that performance was not biased by
sites or selected samples.

Sensitivity was consistent in the training and validation
sets. In all cancers, stage IeIII sensitivity was 44.2% (95% CI:
41.3% to 47.2%) versus 43.9% (95% CI: 39.4% to 48.5%)
https://doi.org/10.1016/j.annonc.2020.02.011 7
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(P ¼ 1.000), respectively. For the pre-specified set of 12
high-signal cancers, stage IeIII sensitivity was 69.8% (95%
CI: 65.6% to 73.7%) versus 67.3% (95% CI: 60.7% to 73.3%),
respectively (P ¼ 0.988). Similarly, stage IeIV sensitivity
across all cancer types was 55.2% (95% CI: 52.7% to 57.7%)
versus 54.9% (95% CI: 51.0% to 58.8%), respectively
(P ¼ 0.897), and in the pre-specified cancers was 77.9%
(95% CI: 75.0% to 80.7%) versus 76.4% (95% CI: 71.6% to
80.7%), respectively (P ¼ 0.573). Clinical models incorpo-
rating baseline demographic information and blood sample
quality metrics alone resulted in <10% sensitivity in the
training set and as such were not evaluated in the validation
set (supplementary information, available at Annals of
Oncology online).

Sensitivity increased with increasing stage of disease
(Figure 4B). In validation, sensitivity in pre-specified cancer
types was 39% (95% CI: 27% to 52%) in stage I (n ¼ 62),
69% (95% CI: 56% to 80%) in stage II (n ¼ 62), 83% (95% CI:
75% to 90%) in stage III (n ¼ 102), and 92% (95% CI: 86% to
96%) in stage IV (n ¼ 130). Among all cancer types, sensi-
tivity was 18% (95% CI: 13% to 25%) in stage I (n ¼ 185),
43% (95% CI: 35% to 51%) in stage II (n ¼ 166), 81%
(95% CI: 73% to 87%) in stage III (n ¼ 134), and 93% (95%
CI: 87% to 96%) in stage IV (n ¼ 148). Performance in in-
dividual tumor types is depicted in Figure 5. These included
numerous deadly cancer types without screening para-
digms; for example in pancreatic cancer sensitivity was 63%
(95% CI: 24% to 91%) in stage I, 83% (95% CI: 36% to 100%)
in stage II, 75% (95% CI: 35% to 97%) in stage III, and 100%
(80% to 100%) in stage IV. Tumor fraction (supplementary
Figure S2, available at Annals of Oncology online) as
measured by the frequency of abnormal tumor methylation
patterns in plasma correlated with tumor fraction based on
tumor mutation variant allele frequencies in plasma con-
firming the tumor-derived nature of the methylation signal.

To ensure consistent performance in centers that did not
contribute to training and to ensure that single sites did not
over-contribute, a post hoc site balancing analysis interro-
gated performance in a subset of centers dropped from the
analysis (supplementary information, available at Annals of
Oncology online). A limited shift in sensitivity consistent
with variability in the training set was observed when
omitting those sites from training [sensitivity for included
versus excluded sites: 53.6% (95% CI: 51.8% to 55.4%)
versus 50.0% (95% CI: 48.2% to 51.8%), respectively];
specificity was also within the expected range of variation
[FPR of 0.5% (95% CI: 0.2% to 1%) versus 0.4% (95% CI:
0.2% to 0.8%), respectively].

A critical attribute of a blood-based multi-cancer detec-
tion test is the ability to localize the TOO to direct the
diagnostic workup. A pre-specified analysis of TOO accuracy
(the fraction of all TOO predictions that were correct) found
Figure 6. Tissue of origin accuracy by individual cancer type in the training and va
Confusion matrices representing the accuracy of tissue of origin (TOO) localization in t
predicted (y-axis) TOO per sample using the targeted methylation classifier is depicted.
(training: n ¼ 844, validation: n ¼ 359) are those with cancer predicted as having ca
were assigned in 95% (806/844) of cases in training and in 96% (344/359) of cases in va
344) of cases in validation.
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that TOO was predicted in 96% (344/359) of samples with a
cancer-like signal in the validation set; among these, accu-
racy was 93% (321/344). Accuracy was consistent between
the training and validation sets and across stages
(Figure 4C). The classifier distinguished from among the
numerous cancer types included in the study with consis-
tent performance in individual cancer types (Figure 6).
DISCUSSION

Herein we report on the largest clinical genomics programs,
to our knowledge, on participants with and without cancer,
to develop and validate a blood-based test for multi-cancer
early detection. The CCGA study was designed such that
results may be generalizable as well as to minimize bias, a
problem that has plagued the early detection field. This was
accomplished by pre-specifying analyses, controlling for
pre-analytic factors (e.g., age, sex, site location) and
ensuring that demographics were comparable between the
cancer and non-cancer groups, ensuring that stage distri-
bution and method of diagnosis were consistent in inde-
pendent training and validation sets (supplementary
Table S1 available at Annals of Oncology online), ensuring
that multiple cancer types at all stages (including early
stages) were represented such that resultant cancer classi-
fiers would not be confounded by inappropriate comparison
cohorts, and ensuring that there were no site-specific
effects on classifier performance. Inclusion of an indepen-
dent validation set confirmed that the classifier was not
over-fitted. Lastly, the inclusion of a large non-cancer cohort
enriched in potentially confounding conditions demon-
strated with confidence a high specificity (i.e. safety) that
may be appropriate for population-level screening, mini-
mizing potential harm from false positives. Together, these
data provide compelling evidence that targeted methylation
analysis of cfDNA can detect and localize a broad range of
non-metastatic and metastatic cancer types including many
common and deadly cancers that lack effective screening
strategies.

Methylation outperformed WGS and targeted mutation
panels in cancer detection and TOO localization7,8 for a
number of reasons. Methylation is more pervasive
compared with canonical mutation sites23 typically inter-
rogated in traditional liquid biopsy approaches. Indeed, this
targeted methylation approach interrogated approximately
1 million informative CpG sites out of the roughly 30 million
CpGs across the genome that can be methylated or
unmethylated.24 This allowed deeper sequencing of those
informative regions compared with WGBS and may over-
come expected cost and efficiency limitations of WGS or
WGBS approaches. Although WGS detected cancer at high
tumor fractions, it had a worse limit of detection than a
lidation sets.
he (A) training and (B) validation sets. Agreement between the actual (x-axis) and
Color corresponds to the proportion of predicted TOO calls. Included participants
ncer at 99.8% specificity (training) or 99.3% specificity (validation). The TOO calls
lidation; calls were correct in 92% (744/806) of cases in training and in 93% (321/
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methylation-based approach.7 Targeted mutation detection
also suffered a worse limit of detection7 and was subject to
highly prevalent mutations present in individuals due to
biological processes such as CHIP.18 As such, unlike
methylation, targeted sequencing required concurrent WBC
sequencing to achieve strong performance. Finally, epige-
netic signals inherently reflect tissue differentiation and
malignant cancer states; this likely contributed to the strong
cancer detection and TOO classification.

Other recently published studies also reported the
feasibility of blood-based multi-cancer detection. These
studies combined mutation detection with serum protein
biomarkers,25 leveraged differences in cfDNA fragment
lengths between cancer and non-cancer participants,10 or
utilized a methylation-based immunoprecipitation approach
to avoid perceived issues with bisulfite sequencing degra-
dation.11 To overcome potential concerns about applica-
bility to broad populations and less prevalent cancers, here
we reported on >50 cancer types (supplementary
information, available at Annals of Oncology online20)
covering sites with >95% of the SEER program cancer
incidence and included more than 4300 cancer and non-
cancer participants in the primary analysis population.
Additionally, this approach was developed after exhaustive
preclinical analyses into three complementary and
comprehensive sequencing approaches,17,19 ensuring that
the highest performing assay was further developed.

A blood-based multi-cancer detection test should
demonstrate certain fundamental performance character-
istics to be useful in a general screening population. These
include a sufficiently high specificity to ensure a low rate of
false positives as well as accuracy in determining TOO. We
reported a <1% FPR, a single, fixed FPR across all cancer
types, such that inclusion of additional cancer types to the
test would increase the number of tumors detected but not
the number of false positives. By contrast, single-cancer
early detection tests used in combination would generally
have a cumulative FPR higher than the individual tests,26

potentially increasing unnecessary diagnostic work-ups.
Accurate TOO localization is critical to direct the diag-
nostic workup; in its absence, patients with a positive test
may be subjected to a diagnostic odyssey. This also applies
to blood-based single-cancer detection, which would still
require accurate TOO to avoid a diagnostic odyssey from
other potential cancers not being tested for. The ability to
discriminate from among so many cancer types may also be
useful in cases of diagnostic uncertainty such as cancer of
unknown primary origin. Finally, there would be little-to-no
benefit from artificially increasing sensitivity by excluding
cancer types in a multi-cancer test; the higher overall
prevalence of cancer versus the prevalence of any single-
cancer type means that a multi-cancer test with moderate
sensitivity may result in a higher yield of detected cancers
than a single-cancer test with very high sensitivity. As such,
sensitivity must be considered in light of the number of
interrogated cancer types.

Screening tests are subject to FPRs and the subsequent
morbidity and psychological, physical, and financial costs
10 https://doi.org/10.1016/j.annonc.2020.02.011
associated with secondary screening or diagnostic tests.
Minimizing these risks and costs requires high positive
predictive value (PPV) in the target population, especially in
asymptomatic populations. PPV is more significantly
impacted by specificity and disease prevalence than by
sensitivity. As noted above, multi-cancer detection would
thus benefit from aggregate cancer incidence compared
with single-cancer screening given that most cancer types
have low prevalence in a screening population. While pre-
cise PPV calculations require measurement in a prospective
trial of asymptomatic individuals, preliminary calculations
can be carried out based on available cancer statistics.
Specifically, assuming test performance replicates in an
asymptomatic population, a multi-cancer test with a stage
IeIV sensitivity of 55% and a specificity of 99.3%, both from
representative populations as reported here, applied to a
similar population with a 1.3% incidence rate per year of
cancer1,27 would detect 715 cancers per 100 000 screened
persons in a long-term screening program and would
necessitate diagnostic work-ups in 691 FPRs, yielding a PPV
of 51%. By contrast, the PPVs for United States Preventive
Services Task Force (USPSTF) recommended screening for
breast, colorectal (stool-based), and lung cancer (in the
USPSTF-recommended high-risk population) range from
3.7% to 4.4%28e30 for every one person with cancer
correctly detected, there would be between 22 and 27
people incorrectly identified as having cancer.

Despite the scale of and care in developing and validating
this targeted methylation approach, the study has limita-
tions. Participants with cancer were not all asymptomatic;
to understand performance in an asymptomatic screening
population will require additional studies, which are
ongoing. Establishing a mortality benefit will also require
additional studies as the CCGA study was not designed to
examine all-cause mortality outcomes. Until such longer-
term studies are completed, a multi-cancer test that shifts
detection to earlier stages may function as a proxy for
mortality, given that cancer-specific mortality is improved
when cancer is diagnosed at earlier stages.Whether cancers
detected at later stages can be intercepted at earlier stages
using this cfDNA-based multi-cancer early detection test will
require additional studies in intended use populations. At
the time of analysis, complete 1-year follow-up was not
available on all non-cancer participants to ensure their
ascribed non-cancer status was accurate, thus potentially
overestimating the FPR and underestimating PPV. Indeed,
prior results from the first sub-study identified cancer signal
up to 15 months before clinical diagnosis in participants
enrolled without a cancer diagnosis.31 Follow-up of non-
cancer participants in this sub-study is ongoing. Aggregate
sensitivities were likely affected by stage and cancer dis-
tribution; reporting by individual cancer type and by stage
as in this report is thus critical to contextualizing aggregate
performance metrics. Confusion in TOO identification often
occurred among HPV-driven cancers (e.g. cervix, anus, head
and neck cancers); analyses are ongoing to further improve
accuracy by leveraging this information. Finally, despite the
broad range of cancer types captured in this study, for some
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cancer types the sample size was small, precluding a full
representation of heterogeneity within some cancer types.

In summary, cfDNA sequencing of informativemethylation
patterns detected a broad range of cancer types atmetastatic
and non-metastatic stages with specificity and sensitivity
performance approaching the goal for population-level
screening. The pre-specified cancer types identified here
account for w63% of all estimated cancer deaths.21,27 Clin-
ical validation in intended use populations is ongoing
(NCT03085888, NCT03934866) and a study has been initiated
that is returning results to health care providers and patients
(NCT04241796). These results support the feasibility of
employing this targeted methylation analysis of cfDNA in
ongoing clinical trials in the intended use population for early
cancer detection.

ACKNOWLEDGEMENTS

Editorial support provided by Kristi Whitfield, PhD from Post-
erDocs (Oakland, CA) as well as Steve Brunn and Ray Hunziker
from ProEd Communications, Inc. (Beachwood, OH).

FUNDING

This work was supported by GRAIL, Inc. (Menlo Park, CA; no
grant number). This publication was also partially supported
by Princess Margaret Cancer Centre’s McCain GU BioBank in
the Department of Surgical Oncology (grant number REB #
08-0124); its contents are solely the responsibility of the
authors and do not necessarily represent the official views
of the University Health Network. CS is supported by the
Francis Crick Institute that receives its core funding from
Cancer Research UK [grant numbers FC001169, FC001202];
the UK Medical Research Council [grant numbers FC001169,
FC001202]; and the Wellcome Trust [grant numbers
FC001169, FC001202]. CS is funded by Cancer Research UK
(TRACERx; PEACE; and CRUK Cancer Immunotherapy Cata-
lyst Network, no grant number), the CRUK Lung Cancer
Centre of Excellence (no grant number); the Rosetrees Trust
(no grant number); and the Breast Cancer Research Foun-
dation (BCRF, no grant number).

DISCLOSURES

The Mayo Clinic was compensated for MCL’s advisory board
activities for GRAIL, Inc. GRO reports personal fees from
GRAIL, Inc. during the conduct of the study as well as
personal fees from Inivata, Sysmex, AstraZeneca, Janssen,
Illumina, and Foundation Medicine outside the submitted
work. EAK reports personal fees from GRAIL, Inc. during the
conduct of the study. MVS reports personal fees and other
from McKesson and personal fees from GRAIL, Inc. during
the conduct of the study as well as other from Merck and
Bristol-Myers Squibb outside the submitted work. CS re-
ports grants from Pfizer, AstraZeneca, BMS, Roche-Ventana,
and Boehringer-Ingelheim; has consulted for Pfizer, Novar-
tis, GlaxoSmithKline, MSD, BMS, Celgene, AstraZeneca,
Illumina, Genentech, Roche-Ventana, GRAIL, Inc., Medicxi,
and the Sarah Cannon Research Institute; has stock options
of Apogen Biotechnologies, Epic Bioscience, GRAIL, Inc., and
Volume xxx - Issue xxx - 2020
has stock options in and is co-founder of Achilles Thera-
peutics. CS is Royal Society Napier Research Professor. HA
reports personal fees from GRAIL, Inc., during the conduct
of the study as well as other from Illumina Inc. outside the
submitted work; in addition, HA has patents pending to
GRAIL, Inc. DAB reports grants from the National Cancer
Institute, other from Berry Consultants, LLC, outside the
submitted work. TCC reports personal fees and other from
Illumina, Inc., outside the submitted work. CC reports per-
sonal fees and other (stock options) from GRAIL, Inc., during
the conduct of the study as well as personal fees from
Genentech outside the submitted work; in addition, CC has
a patent pending outside the submitted work. KD reports
personal fees from GRAIL, Inc. during the conduct of the
study and other from Alphabet outside the submitted work.
FJC reports research support from GRAIL, Inc. MD reports
personal fees from GRAIL, Inc. during the conduct of the
study; in addition, MD has patents pending to GRAIL, Inc. SF
reports personal fees and other from GRAIL, Inc., during the
conduct of the study as well as personal fees and other
from 23andMe and other from Illumina outside the sub-
mitted work. APF reports personal fees from GRAIL, Inc.
during the conduct of the study; in addition, APF has pat-
ents pending to GRAIL, Inc. DF reports personal fees from
GRAIL, Inc. during the conduct of the study as well as
personal fees from Roche Sequencing Solutions outside the
submitted work; in addition, DF has patents pending to
GRAIL, Inc. SG reports personal fees and other from GRAIL,
Inc. during the conduct of the study as well as other from
Illumina outside the submitted work. S. Gross reports per-
sonal fees from GRAIL, Inc. during the conduct of the study;
in addition, S. Gross has patents pending to GRAIL, Inc. MPH
reports personal fees and other from GRAIL, Inc. during the
conduct of the study as well as other from Jazz Pharma-
ceuticals and Natera outside the submitted work. SAP re-
ports personal fees and other from GRAIL, Inc. during the
conduct of the study as well as other from Natera, Inc.
outside of the submitted work. EH reports personal fees
and other from GRAIL, Inc. during the conduct of the study;
in addition, EH has patents pending to GRAIL, Inc. NH re-
ports personal fees from GRAIL, Inc. during the conduct of
the study; in addition, NH has patents pending to GRAIL,
Inc. CH reports personal fees and other from GRAIL, Inc.
during the conduct of the study as well as other from Illu-
mina outside the submitted work. QL reports personal fees
from GRAIL, Inc. during the conduct of the study; in addi-
tion, QL has patents pending to GRAIL, Inc. AJ reports
personal fees from GRAIL, Inc. during the conduct of the
study and personal fees from Illumina outside the submit-
ted work; in addition, AJ has patents pending to GRAIL, Inc.
and a patent (differential tagging of RNA for preparation of
a cell-free DNA/RNA sequencing library) issued to GRAIL,
Inc. RK reports personal fees from GRAIL, Inc. during the
conduct of the study as well as personal fees from Mind-
strong Health, personal fees from Lyell Immunopharma,
personal fees from LifeMine, personal fees from Wisdo,
personal fees from Medical Creations/Extremity, and per-
sonal fees from FOG Pharma all outside the submitted
https://doi.org/10.1016/j.annonc.2020.02.011 11

https://doi.org/10.1016/j.annonc.2020.02.011
https://doi.org/10.1016/j.annonc.2020.02.011


Annals of Oncology M. C. Liu et al.
work. KNK reports personal fees and other from GRAIL, Inc.
during the conduct of the study as well as other from Illu-
mina outside the submitted work. ML reports personal fees
and other from GRAIL, Inc. during the conduct of the study
as well as personal fees and other from Genentech, Inc.,
personal fees and other from Google Life Sciences, personal
fees and other from Boreal Genomics, and personal fees
and other from Genomic Health, Inc. outside the submitted
work; in addition, ML has a patent arising from the CCGA
work pending to GRAIL, Inc. MCM reports personal fees
from GRAIL, Inc. during the conduct of the study; in addi-
tion, MCM has patents pending to GRAIL, Inc. CM reports
personal fees and other from GRAIL, Inc. during the conduct
of the study; in addition, CM has a patent pending to GRAIL,
Inc. VD reports personal fees and other from GRAIL, Inc.
during the conduct of the study. JN reports personal fees
from GRAIL Inc. during the conduct of the study as well as
personal fees from Verily Life Sciences (formerly part of
Google) outside the submitted work. Joshua N. reports
personal fees and other from GRAIL, Inc. during the conduct
of the study. VN reports personal fees from GRAIL Inc.
during the conduct of the study; in addition, VN has patents
pending to GRAIL, Inc. RVS reports personal fees from
GRAIL, Inc. during the conduct of the study as well as
personal fees from Guardant Health outside the submitted
work; in addition, RVS has a patent pending to GRAIL, Inc.
AS reports personal fees from GRAIL, Inc. during the
conduct of the study and is the owner of Illumina stock. LS
reports personal fees from GRAIL, Inc. during the conduct of
the study; in addition, LS has a patent pending to GRAIL,
Inc. MS reports personal fees from Celgene, personal fees
from Millenium/Takeda, and personal fees from Syros
outside the submitted work. DS reports other from US
Oncology during the conduct of the study. AV reports per-
sonal fees and other from GRAIL, Inc. during the conduct of
the study as well as other from Illumina outside the sub-
mitted work. OV reports personal fees from GRAIL, Inc.
during the conduct of the study; in addition, OV has patents
pending to GRAIL, Inc. SRC reports research support from
GRAIL, Inc. JY reports personal fees and other from GRAIL
Inc. during the conduct of the study as well as personal fees
and other from Acerta Pharma B.V., personal fees from
Forty Seven Inc., other from BeiGene, Ltd., other from
Celgene Corporation, other from Loxo Oncology, Inc., other
from Nektar Therapeutics, other from Corvus Pharmaceu-
ticals, Inc., and other from Illumina, Inc., all outside the
submitted work. AB reports a financial interest in GRAIL,
Inc. via Foresite Capital’s funds and personal equity. AMA is
a founder, employee, and shareholder at GRAIL, Inc. and a
paid advisor to Foresite Capital and Myst Therapeutics. JB
reports personal fees from GRAIL, Inc. as well as patents
pending to GRAIL, Inc. during the conduct of the study; JB
also has patents issued to Roche and Philips Medical Sys-
tems outside of this work. PF reports personal fees from
GRAIL, Inc. as well as patents pending to GRAIL, Inc. during
the conduct of the study. WL reports personal fees and
other from GRAIL, Inc. during the conduct of the study and
personal fees from Genentech outside of this work. TM
12 https://doi.org/10.1016/j.annonc.2020.02.011
reports personal fees and other from GRAIL, Inc. and a
patent pending to GRAIL, Inc. during the conduct of the
study; TM also reports personal fees and other from Lexent
Bio, HTG Molecular, and NDA Partners, as well as other from
Genomic Health and personal fees from Terumo Medical
outside of this work. RS, RL, TW, AS, ON, LZ, RC, CY, PS, NR,
CC, AY, A. Shanmugam, JS, GA, AM, JZ, HC, GC, KCS, XC, BA,
JL, JY, FA, LB, J. Berman, JC, TK, SB, JFB, CB, TCC, DC, ZD, ETF,
A-RH, RJ, BJ, QL, SN, CN, SP, RR, OS, ES, AJS, SS, KKS, ST, JMT,
RTW, XY, JY, and NZ report personal fees from GRAIL, Inc.
during the conduct of the study. The remaining authors
have declared no conflict of interest.
REFERENCES

1. NIH National Cancer Insitute. Surveillance, Epidemiology, and End Results
(SEER) Program (www.seer.cancer.gov) SEER*Stat Database: Incidence -
SEER 18 Regs Research Data, Nov 2017 Sub (1973-2015) National Cancer
Institute, DCCPS, Surveillance Research Program, released April 2018,
based on the November 2017 submission. Statistic based on all invasive
cancers, ages 50þ at diagnosis. [www.seer.cancer.gov].

2. Noone A, Howlander N, Krapcho M, et al., eds. SEER Cancer Statistics
Review, 1975-2015, National Cancer Institute, software version 8.3.6.
Bethesda. Available at: https://seer.cancer.gov/csr/1975_2015/.

3. Cossu G, Saba L, Minerba L, Mascalchi M. Colorectal cancer screening:
the role of psychological, social and background factors in decision-
making process. Clin Pract Epidemiol Ment Health. 2018;14(1):
63e69.

4. Narayan A, Fischer A, Zhang Z, et al. Nationwide cross-sectional
adherence to mammography screening guidelines: national behav-
ioral risk factor surveillance system survey results. Breast Cancer Res
Treat. 2017;164(3):719e725.

5. Brasher P, Tanner N, Yeager D, Silvestri G. Adherence to annual lung
cancer screening within the Veterans Health Administration lung
cancer screening demonstration project. Chest. 2018;154(4):636Ae
637A.

6. Limmer K, LoBiondo-Wood G, Dains J. Predictors of cervical cancer
screening adherence in the United States: a systematic review. J Adv
Pract Oncol. 2014;5(1):31e41.

7. Oxnard GR, Klein EA, Seiden MV, et al. Simultaneous multi-cancer
detection and tissue of origin (TOO) localization using targeted bisul-
fite sequencing of plasma cell-free DNA (cfDNA). Ann Oncol.
2019;30(suppl 5):LBA77.

8. Liu MC, Jamshidi A, Venn O, et al. Genome-wide cell-free DNA (cfDNA)
methylation signatures and effect on tissue of origin (TOO) perfor-
mance. J Clin Oncol. 2019;37(suppl 15):3049.

9. Cohen JD, Li L, Wang Y, et al. Detection and localization of surgically
resectable cancers with a multi-analyte blood test. Science.
2018;359(6378):926e930.

10. Cristiano S, Leal A, Phallen J, et al. Genome-wide cell-free DNA frag-
mentation in patients with cancer. Nature. 2019;570(7761):385e389.

11. Shen SY, Singhania R, Fehringer G, et al. Sensitive tumour detection
and classification using plasma cell-free DNA methylomes. Nature.
2018;563(7732):579e583.

12. Merker JD, Oxnard GR, Compton C, et al. Circulating tumor DNA
analysis in patients with cancer: American Society of Clinical Oncology
and College of American Pathologists joint review. J Clin Oncol.
2018;36(16):1631e1641.

13. Razavi P, Li BT, Brown DN, et al. High-intensity sequencing reveals the
sources of plasma circulating cell-free DNA variants. Nat Med.
2019;25(12):1928e1937.

14. Hu Y, Ulrich BC, Supplee J, et al. False-positive plasma genotyping due
to clonal hematopoiesis. Clin Cancer Res. 2018;24(18):4437e4443.

15. Leary RJ, Sausen M, Kinde I, et al. Detection of chromosomal alter-
ations in the circulation of cancer patients with whole-genome
sequencing. Sci Transl Med. 2012;4(162):162ra154.
Volume xxx - Issue xxx - 2020

http://www.seer.cancer.gov
http://www.seer.cancer.gov
https://seer.cancer.gov/csr/1975_2015/
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref3
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref3
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref3
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref3
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref3
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref4
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref4
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref4
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref4
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref4
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref5
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref5
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref5
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref5
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref6
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref6
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref6
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref6
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref7
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref7
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref7
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref7
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref8
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref8
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref8
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref9
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref9
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref9
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref9
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref10
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref10
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref10
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref11
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref11
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref11
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref11
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref12
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref12
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref12
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref12
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref12
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref13
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref13
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref13
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref13
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref14
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref14
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref14
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref15
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref15
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref15
https://doi.org/10.1016/j.annonc.2020.02.011
https://doi.org/10.1016/j.annonc.2020.02.011
https://doi.org/10.1016/j.annonc.2020.02.011
https://doi.org/10.1016/j.annonc.2020.02.011
https://doi.org/10.1016/j.annonc.2020.02.011
https://doi.org/10.1016/j.annonc.2020.02.011
https://doi.org/10.1016/j.annonc.2020.02.011
https://doi.org/10.1016/j.annonc.2020.02.011
https://doi.org/10.1016/j.annonc.2020.02.011


M. C. Liu et al. Annals of Oncology
16. Chan KCA, Jiang P, Chan CWM, et al. Noninvasive detection of cancer-
associated genome-wide hypomethylation and copy number aberra-
tions by plasma DNA bisulfite sequencing. Proc Natl Acad Sci.
2013;110(47):18761e18768.

17. Liu MC, Klein E, Hubbell E, et al. Plasma cell-free DNA (cfDNA) assays
for early multi-cancer detection: the circulating cell-free genome atlas
(CCGA) study. Ann Oncol. 2018;29(suppl 8):500.

18. Swanton C,Venn O, Aravanis A, et al. Prevalence of clonal hematopoiesis
of indeterminate potential (CHIP) measured by an ultra-sensitive
sequencing assay: exploratory analysis of the Circulating Cancer
Genome Atlas (CCGA) study. J Clin Oncol. 2018;36(suppl 15):12003.

19. Klein E, Hubbell E, Maddala T, et al. Development of a comprehensive
cell-free DNA (cfDNA) assay for early detection of multiple tumor
types: the Circulating Cell-free Genome Atlas (CCGA) study. J Clin
Oncol. 2018;36(suppl 15):12021.

20. Amin MB, Greene FL, Edge SB, et al. The Eighth Edition AJCC Cancer
Staging Manual: continuing to build a bridge from a population-based
to a more ‘personalized’ approach to cancer staging. CA Cancer J Clin.
2017;67(2):93e99.

21. Surveillance, Epidemiology, and End Results (SEER) Program SEER*Stat
Database: Mortality - All COD, Aggregated With State, Total U.S. (1969-
2016) <Katrina/Rita Population Adjustment>, National Cancer Insti-
tute, DCCPS, Surveillance Research Program, released December 2018.
Underlying mortality data provided by NCHS (www.cdc.gov/nchs).
Statistic based on 2015-2016 data, all ages. [www.seer.cancer.gov].

22. International Human Genome Sequencing Consortium. Initial sequencing
and analysis of the human genome. Nature. 2001;409(6822):860e921.
Volume xxx - Issue xxx - 2020
23. Vogelstein B, Papadopoulos N, Velculescu VE, et al. Cancer genome
landscapes. Science. 2013;339(6127):1546e1558.

24. Kent WJ, Sugnet CW, Furey TS, et al. The human genome browser at
UCSC. Genome Research. 2002;6:996e1006.

25. Cohen JD, Li L, Wang Y, et al. Detection and localization of surgically
resectable cancers with a multi-analyte blood test. Science.
2018;359(6378):926e930.

26. Croswell JM, Kramer BS, Kreimer AR, et al. Cumulative incidence of
false-positive results in repeated, multimodal cancer screening. Ann
Fam Med. 2009;7(3):212e222.

27. Surveillance, Epidemiology, and End Results SEER*Stat software.
Available at: www.seer.cancer.gov/seerstat.

28. Lehman CD, Arao RF, Sprague BL, et al. National performance
benchmarks for modern screening digital mammography: update from
the Breast Cancer Surveillance Consortium. Radiology. 2017;283(1):
49e58.

29. U. S. Food and Drug Administration. Cologuard Summary of Safety and
Effectiveness Data (Premarket Approval Application P130017). 2014.
Available at https://www.accessdata.fda.gov/cdrh_docs/pdf13/P13
0017B.pdf.

30. The National Lung Screening Trial Research Team. Results of initial low-
dose computed tomographic screening for lung cancer. N Engl J Med.
2013;368(21):1980e1991.

31. Cohn AL, Seiden MV, Kurtzman KN, et al. The Circulating Cell-free
Genome Atlas (CCGA) study: follow-up (F/U) on non-cancer partici-
pants with cancer-like cell-free DNA signals. J Clin Oncol. 2019;37(suppl
15):5574.
https://doi.org/10.1016/j.annonc.2020.02.011 13

http://refhub.elsevier.com/S0923-7534(20)36058-0/sref16
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref16
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref16
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref16
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref16
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref17
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref17
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref17
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref18
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref18
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref18
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref18
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref19
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref19
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref19
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref19
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref20
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref20
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref20
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref20
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref20
http://www.cdc.gov/nchs
http://www.seer.cancer.gov
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref22
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref22
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref22
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref23
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref23
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref23
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref24
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref24
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref24
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref25
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref25
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref25
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref25
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref26
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref26
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref26
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref26
http://www.seer.cancer.gov/seerstat
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref28
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref28
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref28
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref28
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref28
https://www.accessdata.fda.gov/cdrh_docs/pdf13/P130017B.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf13/P130017B.pdf
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref30
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref30
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref30
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref30
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref31
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref31
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref31
http://refhub.elsevier.com/S0923-7534(20)36058-0/sref31
https://doi.org/10.1016/j.annonc.2020.02.011
https://doi.org/10.1016/j.annonc.2020.02.011


Annals of Oncology M. C. Liu et al.
APPENDIX A. AUTHORS FOR THE CCGA CONSORTIUM

CCGA investigators

Minetta C. Liu1y, Geoffrey R. Oxnard2y, Eric A. Klein3, David
Smith4, Donald Richards5, Timothy J. Yeatman6,a, Allen L.
Cohn7, Rosanna Lapham8, Jessica Clement9, Alexander S.
Parker10,b, Mohan K. Tummala11, Kristi McIntyre12, Mikkael
A. Sekeres13, Alan H. Bryce14, Robert Siegel15, Xuezhong
Wang15, David P. Cosgrove16, Nadeem R. Abu-Rustum17,
Jonathan Trent18, David D. Thiel19, Carlos Becerra20, Manish
Agrawal21, Lawrence E. Garbo22, Jeffrey K. Giguere23, Ross
M. Michels23,c, Ronald P. Harris24, Stephen L. Richey25,
Timothy A. McCarthy26, David M. Waterhouse27, Fergus J.
Couch28, Sharon T. Wilks29, Amy K. Krie30, Rama Balara-
man31, Alvaro Restrepo32, Michael W. Meshad33, Kimberly
Rieger-Christ34, Travis Sullivan34, Christine M. Lee35, Daniel
R. Greenwald36, William Oh37, Che-Kai Tsao37, Neil Flesh-
ner38, Hagen F. Kennecke39, Maged F. Khalil40, David R.
Spigel41, Atisha P. Manhas42, Brian K. Ulrich43, Philip A.
Kovoor44, Christopher Stokoe45, Jay G. Courtright46, Habte
A. Yimer47, Timothy G. Larson48, Charles Swanton49,50,
Michael V. Seiden51y*
STRIVE investigators

Steven R. Cummings52
GRAIL, Inc. (alphabetical)

Farnaz Absalan53, Gregory Alexander53, Brian Allen53, Hamed
Amini53, Alexander M. Aravanis53, Siddhartha Bagaria53, Leila
Bazargan53, John F. Beausang53, Jennifer Berman53, Craig
Betts53, Alexander Blocker53,d, Joerg Bredno53, Robert Calef53,
Gordon Cann53, Jeremy Carter53, Christopher Chang53,
Hemanshi Chawla53, Xiaoji Chen53, Tom C. Chien53, Daniel
Civello53, Konstantin Davydov53, Vasiliki Demas53, Mohini
Desai53, Zhao Dong53, Saniya Fayzullina53, Alexander P.
Fields53, Darya Filippova53, Peter Freese53, Eric T. Fung53,
Sante Gnerre53,e, Samuel Gross53, Meredith Halks-Miller53,f,
Megan P. Hall53, Anne-Renee Hartman53,g, Chenlu Hou53, Earl
Hubbell53, Nathan Hunkapiller53, Karthik Jagadeesh53,h, Arash
Jamshidi53, Roger Jiang53, Byoungsok Jung53, TaeHyung
Kim53,i, Richard D. Klausner53, Kathryn N. Kurtzman53, Mark
Lee53,j, Wendy Lin53,k, Jafi Lipson53, Hai Liu53, Qinwen Liu53,
Margarita Lopatin53, Tara Maddala53,l, M. Cyrus Maher53,
Collin Melton53, Andrea Mich53, Shivani Nautiyal53,f, Jonathan
Newman53, Joshua Newman53, Virgil Nicula53, Cosmos Nic-
olaou53,m, Ongjen Nikolic53,n,Wenying Pan53, Shilpen Patel53,o,
Sarah A. Prins53, Richard Rava53,f, Neda Ronaghi53, Onur
Sakarya53, Ravi Vijaya Satya53,e, Jan Schellenberger53, Eric
Scott53, Amy J. Sehnert53,p, Rita Shaknovich53, Avinash Shan-
mugam53, K.C. Shashidhar53, Ling Shen53,q, Archana Shenoy53,
Seyedmehdi Shojaee53, Pranav Singh53, Kristan K. Steffen53,
Susan Tang53, Jonathan M. Toung53, Anton Valouev53,r, Oliver
Venn53, Richard T. Williams53,s, Tony Wu53, Hui H. Xu53,q,
Christopher Yakym53, Xiao Yang53, Jessica Yecies53, Alexander
S. Yip53, Jack Youngren53, Jeanne Yue53, Jingyang Zhang53, Lily
Zhang53, Lori (Quan) Zhang53, Nan Zhang53
14 https://doi.org/10.1016/j.annonc.2020.02.011
Advisors

Christina Curtis54, Donald A. Berry55

*Corresponding author.
yContributed equally.
Affiliations

1. Division of Medical Oncology, Department of Oncology,
Mayo Clinic, Rochester, USA.

2. Lowe Center for Thoracic Oncology, Dana Farber Can-
cer Institute, Boston, USA.

3. Glickman Urological and Kidney Institute, Cleveland
Clinic, Cleveland, USA.

4. Compass Oncology, Vancouver, USA.
5. Texas Oncology, Tyler, USA.
6. Gibbs Cancer Center and Research Institute, Spartan-

burg, USA.
7. Rocky Mountain Cancer Center, Denver, USA.
8. Spartanburg Regional Healthcare System, Spartanburg,

USA.
9. Hartford HealthCare Cancer Institute, Hartford, USA.
10. Mayo Clinic, Jacksonville, USA.
11. Mercy Clinic Cancer Center, Springfield, USA.
12. TOPA Dallas Presbyterian, Dallas, USA.
13. Hematology and Medical Oncology, Cleveland Clinic,

Cleveland, USA.
14. Genomic Oncology Clinic, Mayo Clinic, Phoenix, USA.
15. Bon Secours St. Francis Cancer Center, Greenville,

USA.
16. Compass Oncology, Vancouver Cancer Center, Van-

couver, USA.
17. Department of Surgery, Memorial Sloan Kettering

Cancer Center, New York, USA.
18. Department of Hematology/Oncology, University of

Miami Health System, Miami, USA.
19. Department of Urology, Mayo Clinic, Jacksonville,

USA.
20. Department of Medical Oncology, Texas Oncology-

Baylor Charles A. Sammons Cancer Center, Irving, USA.
21. Department of Medical Oncology, Maryland Oncology

Hematology, Rockville, USA.
22. New York Oncology Hematology, Albany, USA.
23. Greenville Health System Cancer Institute, Seneca,

USA.
24. Department of Internal Medicine, Broome Oncology,

Binghamton, USA.
25. Texas Oncology, Fort Worth, USA.
26. Virginia Cancer Specialists, Fairfax, USA.
27. Oncology Hematology Care, Cincinnati, USA.
28. Department of Laboratory Medicine and Pathology,

Mayo Clinic, Rochester, USA.
29. Texas Oncology, San Antonio, USA.
30. Avera Medical Group Hematology and Oncology,

Sioux Falls, USA.
31. Florida Cancer Affiliates, Ocala, USA.
32. Texas Oncology, McAllen, USA.
33. Southern Cancer Center, Daphne, USA.
Volume xxx - Issue xxx - 2020

https://doi.org/10.1016/j.annonc.2020.02.011
https://doi.org/10.1016/j.annonc.2020.02.011
https://doi.org/10.1016/j.annonc.2020.02.011
https://doi.org/10.1016/j.annonc.2020.02.011
https://doi.org/10.1016/j.annonc.2020.02.011
https://doi.org/10.1016/j.annonc.2020.02.011
https://doi.org/10.1016/j.annonc.2020.02.011
https://doi.org/10.1016/j.annonc.2020.02.011
https://doi.org/10.1016/j.annonc.2020.02.011


M. C. Liu et al. Annals of Oncology
34. Translational Research, Lahey Hospital and Medical
Center, Burlington, USA.

35. Texas Oncology, The Woodlands, USA.
36. Sansom Clinic, Ridley-Tree Cancer Center, Santa Bar-

bara, USA.
37. Department of Medicine, Icahn School of Medicine,

The Mount Sinai Hospital, New York, USA.
38. Princess Margaret Cancer Centre’s McCain GU Bio-

Bank, in the Department of Surgical Oncology, University
of Toronto, Princess Margaret Cancer Centre, Toronto,
Canada.

39. Department of Medical Oncology, Virginia Mason
Benaroya Research Institute, Seattle, USA.

40. Hematology Oncology, Lehigh Valley Health Network,
Allentown, USA.

41. Sarah Cannon Research Institute/Tennessee
Oncology, PLLC, Nashville, USA.

42. Department of Hematology/OncologyTexas
Oncology-Methodist Dallas Cancer Center, Dallas, USA.

43. Department of Medical Oncology, Texoma Cancer
Center, Wichita Falls, USA.

44. Department of Medical Oncology, Texas Oncology,
Plano West, Plano, USA.

45. Department of Medical Oncology, Texas Oncology,
Plano East, Plano, USA.

46. Department of Medical Oncology, Texas Oncology,
Medical City Dallas, Dallas, USA.

47. Department of Medical Oncology, Texas Oncology,
Tyler, Tyler, USA.

48. Department of Medical Oncology, Minnesota
Oncology, Minneapolis, USA.

49. Cancer Evolution and Genome Instability Laboratory,
The Francis Crick Institute, London, UK.

50. Cancer Evolution and Genome Instability Laboratory,
University College London Cancer Institute, London, UK.

51. Gynecologic Medical Oncology, US Oncology
Research, The Woodlands, USA.

52. San Francisco Coordinating Center, Sutter Health
Research, San Francisco, USA.

53. Research and Development, GRAIL, Inc., Menlo Park,
USA.
Volume xxx - Issue xxx - 2020
54. School of Medicine, Departments of Medicine and
Genetics, Stanford University, Stanford, USA.

55. Department of Biostatistics, Division of Basic Sci-
ences, MD Anderson Cancer Center, Houston, USA.
Current affiliations:
aCurrent affiliation: Department of General Surgery, Inter-
mountain Healthcare, Murray, USA.

bCurrent affiliation: University of Florida College of
Medicine, Jacksonville, USA.

cCurrent affiliation: Prisma Health Cancer Institute, Sen-
eca, USA.

dCurrent affiliation: Foresite Labs, San Francisco, USA.
eCurrent affiliation: Research and Development, Guar-

dant Health, Redwood City, USA.
fFormerly of GRAIL, Inc., Menlo Park, USA.
gCurrent affiliation: Operator Collective, San Francisco,

USA.
hCurrent affiliation: Department of Computer Science,

Stanford University, Stanford, USA.
iCurrent affiliation: Department of Computer Science,

University of Toronto, Toronto, Canada.
jCurrent affiliation: Personalized Healthcare, Product

Development, Genentech/Roche, San Francisco, USA.
kCurrent affiliation: Companion Diagnostics, Genentech,

San Francisco, USA.
lCurrent affiliation: TMBiostats, LLC, Sunnyvale, USA.
mCurrent affiliation: Research and Development,

CloudEng LLC, Palo Alto, USA.
nCurrent affiliation: Data Science Department, Better-

Omics.com, San Francisco, USA.
oCurrent affiliation: Medical Affairs, Genentech, San

Francisco, USA.
pCurrent affiliation: Clinical Development, MyoKardia,

San Francisco, USA.
qCurrent affiliation: Research and Development, Inter-

Venn Biosciences, Redwood City, USA.
rCurrent affiliation: Research and Development Depart-

ment, ArsenalBio, San Francisco, USA.
sCurrent affiliation: WuXi NextCODE, Cambridge, USA.
https://doi.org/10.1016/j.annonc.2020.02.011 15

https://doi.org/10.1016/j.annonc.2020.02.011
https://doi.org/10.1016/j.annonc.2020.02.011

	Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA
	Introduction
	Methods
	Study design and participants
	Sample collection, accessioning, storage, and processing
	WGBS
	Targeted methylation panel design, sample processing, and sequencing
	Classification of cancer versus non-cancer and TOO
	Tumor fraction
	Blinding

	Results
	Discussion
	Acknowledgements
	Funding
	Disclosures
	References
	Appendix A. Authors for the CCGA Consortium
	CCGA investigators
	STRIVE investigators
	GRAIL, Inc. (alphabetical)
	Advisors
	Affiliations
	Current affiliations:



